Structural shimming for high-resolution nuclear magnetic resonance spectroscopy in lab-on-a-chip devices.

نویسندگان

  • Herbert Ryan
  • Alison Smith
  • Marcel Utz
چکیده

High-resolution proton NMR spectroscopy is well-established as a tool for metabolomic analysis of biological fluids at the macro scale. Its full potential has, however, not been realised yet in the context of microfluidic devices. While microfabricated NMR detectors offer substantial gains in sensitivity, limited spectral resolution resulting from mismatches in the magnetic susceptibility of the sample fluid and the chip material remains a major hurdle. In this contribution, we show that susceptibility broadening can be avoided even in the presence of substantial mismatch by including suitably shaped compensation structures into the chip design. An efficient algorithm for the calculation of field maps from arbitrary chip layouts based on Gaussian quadrature is used to optimise the shape of the compensation structure to ensure a flat field distribution inside the sample area. Previously, the complexity of microfluidic NMR systems has been restricted to simple capillaries to avoid susceptibility broadening. The structural shimming approach introduced here can be adapted to virtually any shape of sample chamber and surrounding fluidic network, thereby greatly expanding the design space and enabling true lab-on-a-chip systems suitable for high-resolution NMR detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic resonance detection: spectroscopy and imaging of lab-on-a-chip.

This mini-review is focused on the use of nuclear magnetic resonance (NMR) spectroscopy and imaging to study processes on lab-on-a-chip devices. NMR as an analytical tool is unmatched in its impact across nearly every area of science, from biochemistry and medicine to fundamental chemistry and physics. The controls available to the NMR spectroscopist or imager are vast, allowing for everything ...

متن کامل

An optimised detector for in-situ high-resolution NMR in microfluidic devices.

Integration of high-resolution nuclear magnetic resonance (NMR) spectroscopy with microfluidic lab-on-a-chip devices is challenging due to limited sensitivity and line broadening caused by magnetic susceptibility inhomogeneities. We present a novel double-stripline NMR probe head that accommodates planar microfluidic devices, and obtains the NMR spectrum from a rectangular sample chamber on the...

متن کامل

High-resolution Nmr Spectroscopy on a Chip by Structural Compensation of Magnetic Susceptibility Mismatch

Microfluidic compensation structures are introduced as a tool to homogenize magnetic field gradients present in microfluidic NMR spectroscopy. Magnetic field distortions are eliminated by compensating the magnetic susceptibility mismatch between the sample fluid and chip material through additional, lithographically defined compensation structures. This strategy will allow high resolution NMR s...

متن کامل

An Analytical Approach towards Passive Ferromagnetic Shimming Design for a High-Resolution NMR Magnet.

This paper presents a warm bore ferromagnetic shimming design for a high resolution NMR magnet based on spherical harmonic coefficient reduction techniques. The passive ferromagnetic shimming along with the active shimming is a critically important step to improve magnetic field homogeneity for an NMR Magnet. Here, the technique is applied to an NMR magnet already designed and built at the MIT'...

متن کامل

MRS Shimming: An Important Point Which Should not be Ignored

Introduction: Proton magnetic resonance spectroscopy (MRS) is a well-known device for analyzing the biological fluids metabolically. Obtaining accurate and reliable information via MRS needs a homogeneous magnetic field in order to provide well-defined peaks and uniform water suppression. There are lots of reasons which can disturb the magnetic field homogeneity which can be corrected by a proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 14 10  شماره 

صفحات  -

تاریخ انتشار 2014